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We present a strategy for continuously and reversibly tuning the propagation of elastic waves in one-dimensional
systems without need for persistent external stimulation. The general approach places a bistable metamaterial on
an elastic substrate which is subsequently deformed via prescribed boundary displacements. The internal substrate
deformation, which is shaped by a prescribed spatial variation in elasticity, is reflected in the overlaying metamaterial
and facilitates the reconfiguration of bistable elements over isolated regions. As each configuration is associated with a
unique stiffness, these regions represent an adjustable, meso-scale morphology amenable to tuning elastic waves. The
essential bistability is characterized by an asymmetric, double-welled equipotential energy function and is developed
by mechanical rather than phenomenological means. The asymmetry provides for the unique, configuration-specific
(stable) equilibrium stiffnesses; the equipotential promotes reversibility (i.e., no one configuration is energetically
preferred). From a uniform metamaterial-substrate system, we demonstrate the utility of our strategy by producing
a waveguide with shifting pass band and a metamaterial with variable unit cell morphology.

I. INTRODUCTION

Architected metamaterials1–3 are remarkable for their
extraordinary thermal4–6, mechanical7–9, acoustic10–15, and
optical16,17 performance stemming from a cleverly designed
internal architecture, comprising both a characteristic (often
periodic) structural geometry and constituent material
morphology – in a sense, representing the emancipation of
material behavior from the limitations of chemistry. In
particular, research pertaining to elastic wave propagation
has realized extreme/counterintuitive effective properties8,18

that bring once fantastic applications into practical reach19–22.
In addition, illustrating a broad range of applicable scales,
new strategies for, e.g., thermal management23,24, signal
processing25, acoustic sensing26, energy harvesting27–29, and
earthquake mitigation30,31 have also been proposed.

However, utilizing “stiff” material constituents in the
metamaterial construction leaves little opportunity to adapt
the dynamic performance for scenarios where the target
frequency range may fluctuate significantly (e.g., as in
environmental vibration mitigation and energy harvesting
applications), thus limiting effectiveness outside a fixed
service range. One remedy is the class of active architectures
which leverage shunted piezoelectric elements32–37 to
adjust the effective stiffness via electromechanical coupling,
thus tuning the native dispersion characteristics of the
metamaterial. Nevertheless, it is conceivable that for
certain metamaterial applications, obviating the need for the
accompanying complex wiring and external controllers is
desirable. Serving to accommodate this requirement, a second
approach toward inherently tunable performance utilizes
soft material constituents for which deforming the internal
architecture modifies the effective stiffness and, consequently,
the characteristic wave dispersion. By exploiting instability
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and multistability in readily re-configurable soft architectures,
efforts to imbue metamaterials with an inherent tuning
capability, generally, effect one of two outcomes: (i)
the tuning is continuous and reversible, though the tuned
configurations are reliant on the constant support of an
external field or prescribed boundary condition38–45 or (ii)
the tuning is among a finite number of discrete, stable
configurations, though the process is energetically fated
to follow an energy-minimizing sequence46–52, prohibiting
restoration to an earlier configuration; thus, tuning is
irreversible and, ultimately, terminated. Continuous tuning
allows for small adjustments; reversible tuning facilitates
repeated adjustments; and stable tuning eliminates the
need for an ever-present supporting field or boundary
condition. Xia et al.53 demonstrated these tuning abilities
in a silicon-coated microlattice utilizing an electrochemical
reaction. A metamaterial system possessing a inherent tuning
capability independent of chemistry and external controllers
which permits continuous, reversible, and stable adjustments
to the dispersion characteristics [i.e., combining the desirable
attributes of outcomes (i) and (ii)] is appealing and the aim of
the present work.

In this article, we propose a class of architected
metamaterial whose effective stiffness as well as its
distribution is continuously, stably, and reversibly adjustable
for adaptive dynamic performance using the technique
of strain engineering. The general strategy couples a
soft, multistable metamaterial to a relatively stiff (though
deformable) foundation which, when strained, assists in
reconfiguring the multistable architecture, modifying the
metamaterial performance. A similar approach has been
explored in the context of controllable electronic and photonic
performance in thin-film materials54,55. Following this
strategy, the strain state in the elastic substrate is reflected
in the overlaying metamaterial, causing isolated regions to
switch to the opposing configuration characterized by a
unique effective stiffness, i.e., one that is acoustically distinct
to the propagating wave. Moreover, dependent upon the strain
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magnitude, the size of the switched regions are customizable,
enabling a post-fabrication redistribution of the stiffness
property. This redistribution of a mechanical property,
achieved without an external controller or appeal to chemistry,
adds a second dimension to the tuning operation and is unique
to the relevant literature. As the non-convex potential energy
landscape is not biased toward a particular configuration, the
tuned stiffness patterning in the re-configured metamaterial
is stable (permitting quasi-static removal of the instigating
boundary displacements) and potentially reversible (requiring
the same effort to elicit and reverse the tuned state). In one
dimension, we introduce and analyze two such metamaterial
systems. While the multistability is localized in one
system, it is interactive in another which affects reversibility.
In addition, continuous tuning, i.e., that permitting small
adjustments in configuration, is demonstrated. Our approach
will be applied to the establishment of waveguides with
shifting transparency and metamaterial unit cells with tunable
(stiffness) morphology.

The remainder of the article is organized as follows:
Section II presents simple realizations of our strategy in
the form of mass-spring systems, including a qualitative
and analytical description of the energetic and dispersion
characteristics. In Section III, we analyze and discuss the
results of numerical simulations illustrating the tunable wave
filtering properties. We demonstrate the concept in the form
of (1) a waveguide with an adjustable pass band and (2) a
metamaterial with a variable unit cell (stiffness) morphology.
Finally, in Sec. IV, we draw insights from the numerical
results and suggest avenues for further study.

II. MODEL DESCRIPTION

A. The Asymmetric, Equipotential Function

Figure 1a illustrates the basic structural element giving rise
to the metamaterial multistability, representing an elaborated
conception of the bistable unit found in related works49,56.
In part, the bistable element comprises two identical,
pin-connected axial springs, kA, arranged symmetrically
about and at an angle to the x-axis as illustrated. This
construction ensures that, as the pinned end displaces, uA, the
combined reaction from the axial springs is always parallel
to the displacement. A notable distinction with earlier
works, the remote ends of each spring are not fixed, but
may displace, uB, along the horizontal axis. Given the
relative displacement, ∆ = (uA− uB)/dx, the corresponding
non-convex potential function, ψA(∆), is symmetric about
the unstable equilibrium configuration, ∆ = 1. In addition
to ψA(∆), the total bistable energy has contributions from an
elastic potential, ψT(∆), originating from a pair of torsional
springs, kT, at the remote ends of each kA, and a magnetic
potential, ψM(∆), stemming from the interaction between a
horizontally-aligned magnetic dipole moment, pm, affixed to
pinned end and a pair of dipole moments, ps, collocated with
the torsional springs and oriented an angle, θ , with respect to
the x-axis (see Fig. 1a). Together, these contributions foster

FIG. 1. (Color online). Bistable Metamaterial on Elastic Foundation.
(a) The essential bistable element of the metamaterial-substrate
systems. (b) The non-convex energy function is adjusted by
the geometric and material parameters to yield an asymmetric,
equipotential profile. The asymmetry is reflected in the
corresponding stiffness function, resulting in a unique stiffness,
k = {ks1,ks2}, for each of the two equilibrium configurations, ∆ =
{∆s1,∆s2}. The shaded region identifies the negative stiffness region.
(c) Two metamaterial-substrate (MM-SS) arrangements with lattice
constant, a: one in which the bistable element is local (LOC) to
each metamaterial degree-of-freedom; another in which the bistable
element couples two metamaterial degrees-of-freedom (INT). For
compact display, the bistable element is represented as a nonlinear
spring which is indicated by an arrow.

the crucial asymmetric equipotential necessary for stable,
reversible tuning. Specifically, the total bistable potential
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becomes

ψ(∆) = ψA(∆)+ψM(∆)+ψT(∆), (1)

where the full equations for each component is given in the
Appendix. The corresponding stiffness function is given as
k(∆) = ∂ 2ψ/∂∆2. The two stable equilibrium configurations,
∆ = {∆s1,∆s2} (∆s1 < ∆s2), are characterized by stiffnesses
k = {ks1,ks2}.

Figure 1b illustrates the effect of each component in Eq.
(1) on the shape of the bistable energy landscape and stiffness
function. While kT = 0 and the dipole moments ps are
oriented such that θ = 0, the bistable potential is symmetric
[Fig. 1b.(i)]; consequently, ks1 = ks2. Changing either of
these conditions alone, generally, biases the energy landscape
toward a specific equilibrium configuration [Fig. 1b.(ii)] and
hinders reversible tuning; however, a suitable choice of kT and
ps will produce an asymmetric, equipotential landscape with
ks1 6= ks2 [Fig. 1b.(iii)].

B. The Governing Equations and Homogeneous Dispersion
Relations

Two metamaterial-substrate arrangements are considered,
distinguished by the placement of the bistable element within
the unit cell of an N-cell chain (schematically represented as
a nonlinear spring in Fig. 1c). In one arrangement (LOC), the
bistable element couples the local metamaterial and substrate
degrees-of-freedom, i.e., {uA,uB} → {v j,Vj}; in another
(INT), the bistable element links nearest neighbors in the
overlaying metamaterial, i.e., {uA,uB} → {v j−1,v j}. In the
preceding statement, the right arrow maps the displacements
of the bistable element, uA and uB (Fig. 1a), to those of
the metamaterial layer, v, and substrate layer, V (Fig. 1c).
The substrate features springs of variable stiffness, s j, joining
neighboring degrees-of-freedom. The variability enables an
inhomogeneous strain. In addition, each arrangement features
springs, kI, which are interactive in the LOC arrangement and
local in the INT arrangement.

Dimensionless governing equations will enable the
investigation of the dynamics without reference to explicit
geometric and material parameters. For this reason,
displacements, position, and time are scaled by suitable
quantities:

v̄ = v/dx, V̄ =V/dx, x̄ = x/a, t̄ = ω0t,

where ω2
0 = kI/m. In addition, kId2

x defines a convenient unit
of energy. Thus, for a chain of N unit cells, the dimensionless

Lagrangian is

L LOC =
N

∑
j=1

[
1
2
( ˙̄v2

j +
˙̄V 2

j )− ψ̄(V̄j, v̄ j)

]

− 1
2

N

∑
j=2

[
s̄ j(V̄j−V̄j−1)

2 +(v̄ j− v̄ j−1)
2] , (2a)

L INT =
1
2

N

∑
j=1

[
˙̄v2

j +
˙̄V 2

j − (v̄ j−V̄j)
2
]

−
N

∑
j=2

[
s̄ j

2
(V̄j−V̄j−1)

2 + ψ̄(v̄ j, v̄ j−1)

]
, (2b)

where s̄ j = s j/kI is the normalized local substrate stiffness
and ψ̄ = ψ/kId2

x . Accordingly, for an arbitrary unit cell, j, the
Euler-Lagrange governing equations stemming from Eqs. (2)
are

¨̄v j +(2v̄ j− v̄ j−1− v̄ j+1)+
∂ψ̄(V̄j, v̄ j)

∂ v̄ j
= 0, (3a)

¨̄Vj + s̄ j(V̄j−V̄j−1)+ s̄ j+1(V̄j−V̄j+1)+
∂ψ̄(V̄j, v̄ j)

∂V̄j
= 0.

(3b)

for the LOC arrangement and

¨̄v j +(v̄ j−V̄j)+
∂ψ̄(v̄ j, v̄ j+1)

∂ v̄ j
+

∂ψ̄(v̄ j, v̄ j−1)

∂ v̄ j
= 0, (4a)

¨̄Vj +(V̄j− v̄ j)+ s̄ j(V̄j−V̄j−1)+ s̄ j+1(V̄j−V̄j+1) = 0, (4b)

for the INT arrangement. In the simulations to follow, Eqs.
(3) and (4) are used to model the response of the system to
prescribed substrate boundary displacement.

To evaluate harmonic wave propagation in the overlaying
metamaterial, we assume s̄ j is such that the substrate is
comparatively rigid so that any disturbance propagating
within the metamaterial does not transfer a meaningful portion
of its energy into the substrate. Thus, we need only consider
Eqs. (3a) and (4a) in the analysis. For the simplest case
of a homogeneous metamaterial (i.e., bistable elements in
identical configuration), the application of Bloch’s theorem
provides the characteristic dispersion relations for the LOC
and INT arrangements, respectively, (see Appendix)

2+ k̄s(i)−
1
γ
− γ = ω̄

2, (LOC) (5a)

1+ k̄s(i)

(
2− 1

γ
− γ

)
= ω̄

2, (INT) (5b)

where ω̄ = ω/ω0 is the normalized wave frequency and
γ = exp(iκa) the propagation constant with dimensionless
complex wavenumber, κa. In solving Eqs. (5) for γ , the real
(propagating) and imaginary (attenuating) components of the
complex wavenumber are extracted as: κRa = |Re(i lnγ)| and
κIa = |Im(i lnγ)|.
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III. NUMERICAL RESULTS

For analysis, the material and geometric parameters
contained in Table I are utilized and are unique to each system.
As detailed in the Appendix, the parameters define the bistable
potential function, ψ̄ . Consequently, for both the LOC
and INT arrangements, k̄s2/k̄s1 = 10. Figure 2 displays the
arrangement-specific dispersion curves for the metamaterial
uniformly in each of the two stable configurations. The
configuration-specific frequency ranges over which the
metamaterial supports propagating waves begins to illustrate
the anticipated performance tuning capability.

In the following subsections, respectively, we utilize
substrates with constant and periodic spatial variation in
stiffness, s̄ j, to re-configure the overlaying metamaterial
and alter its dynamic performance in the context of wave
propagation. These will be applied to the establishment of
waveguides with shifting transparency and metamaterials with
tunable pass bands.

A. Waveguide with Shifting Transparency

To demonstrate the enhanced functionality acquired by a
bistable metamaterial coupled to a strained elastic substrate,
we first study the case of a homogeneous foundation, i.e.,
s̄ j = const. We consider a chain of N = 50 unit cells and,
without loss of generality, initiate each bistable element

FIG. 2. Dispersion Diagram. For an asymmetric bistable potential,
the equilibrium stiffnesses are, generally, distinct, producing unique
dispersion diagrams. In the above, the shaded region identifies the
shared frequency range of the configuration-specific pass bands. The
inset shows the frequency region of the lower band gap.

in the first stable configuration, ∆s1; thus, the original,
untuned metamaterial is characterized by the stiffness, k̄s1.
Prescribed displacements are applied quasi-statically to the
substrate boundaries, establishing a uniform internal strain,
ε = (V̄N − V̄1)/N. As a consequence of substrate coupling,
the metamaterial simultaneously deforms, effecting switching
in certain bistable elements. Subsequently, the boundary
displacements are quasi-statically removed, leaving a stable
pattern of original and re-configured bistable elements which
establishes the tuned metamaterial.

For the LOC arrangement, the kI resist the metamaterial
deformation, leading to a relative displacement between the
local metamaterial and substrate degrees-of-freedom, ∆ j =
v̄ j − V̄j, which changes signs about the midpoint of the
mass-spring chain. Thus, switching is facilitated in bistable
elements on one half of the metamaterial (especially closer
to the boundary) and hindered in those elements on the
opposite half. At most, substrate strain may re-configure
only half of the bistable elements in the chain. A single
domain wall separates the original and the switched elements,
each characterized by acoustically distinct stiffnesses, k̄s1 and
k̄s2, respectively. These effects are depicted in Fig. 3a for
increasing (compressive) substrate strain.

For the INT arrangement, the bistable elements oppose the
metamaterial deformation, ∆ j = v̄ j− v̄ j+1, which, due to the
free metamaterial boundaries, decreases in magnitude from
the chain midpoint but does not change sign. Therefore,
all elements are susceptible to re-configuration, although
elements nearer the metamaterial interior will switch first. In
addition, as switching entails ∆ j 6= 0, in the absence of the
substrate, the tuned metamaterial would exhibit a lingering
deformation (i.e., a residual strain) – the more elements
that switch, the greater the effect. However, the substrate
counteracts this effect and, since it is rigid (though elastic)
compared to the metamaterial, generally, ∆ j 6= ∆s(i), as for
the LOC arrangement. For the INT arrangement, two domain
walls form as a consequence of interior elements switching
before those nearer the boundaries; however, since ∆ j deviates
from the equilibrium values, ∆s(i), the local stiffness, k̄ j, also
deviates from k̄s(i). These effects are depicted in Fig. 3b for
increasing (compressive) substrate strain.

To demonstrate the strain-dependent wave dynamics of
the tuned metamaterial, Figs. 3c,d display the FFT of
the time signal v̄50(t̄) following an impulse, ˙̄v1(t̄)δ (t̄ − t̄0),
which instigates a propagating disturbance. An absorbing
boundary consisting of an additional 200 cells with k̄ j = k̄50
(51 ≤ j < 250) and linearly increasing damping is utilized.
Dependent upon the specific tuned stiffness profile, k̄ j, the
frequency range over which the metamaterial is transparent
to propagating waves shifts. For the LOC arrangement
in Fig. 3c, following a substrate strain of ε = −6.75×

TABLE I. Material and Geometric Parameters

k̄A k̄T k̄M δ ω2
0

LOC 1/10 187/8791 71/565 2 100
INT 100 1957/92 14200/113 2 1/10
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FIG. 3. (Color online). Waveguide with Shifting Transparency. The relative displacement and stiffness profiles of bistable elements in the (a)
LOC and (b) INT metamterial-substrate arrangements. The dashed lines identify the stable equilibrium displacements, ∆s(i), and stiffnesses,
k̄s(i). The indicated strain, ε , is that induced in the substrate by a quasi-statically applied (and subsequently removed) boundary displacement.
(c,d) The strain-dependent stiffness profile affects the propagation of waves generated by an impulse. This is apparent in the non-coincident
Fourier transforms of v̄50(t̄) at different strains. The dashed lines represent the upper and lower frequency bounds of the pass bands for the
homogeneous ∆s1 and ∆s2 configurations. The shaded region identifies the shared frequency range of the configuration-specific pass bands

10−4, the metamaterial dynamics is essentially unchanged
as few bistable elements are re-configured; consequently,
components of the transmitted signal lie within the pass
band associated with k̄s1 in Fig. 2a. Following a substrate
strain of ε = −0.47, the metamaterial exhibits two domains
characterized by k̄s1 and k̄s2, respectively; therefore, the
components of the transmitted signal are restricted to the
narrower frequency range in which the dispersion curves in
Fig. 2a overlap. Outside this range, wave motion is hindered
by Bragg scattering and confined to the domain in which the
disturbance was generated. A similar effect is observed for the
INT arrangement in Fig. 3d where sufficient substrate strain
causes most of the bistable elements to switch. Note, however,
that the residual strain causes the stiffness profile to deviate
from k̄s2 in the switched region and so the frequency range
of components within the transmitted wave deviates from that
indicated by Fig. 2b.

The results depicted in Fig. 3 demonstrate the utility of
an elastic substrate for tuning metamaterials with multistable
elements: with access to only the substrate boundaries,
the multistable elements at the boundary and within the
interior may be switched. In contrast, earlier works utilizing
multistable elements for tunable metamaterial performance

offer no means of switching individual or isolated groups
of elements in the interior. For both the LOC and
INT arrangements, a strained substrate enables altering the
metamaterial morphology (i.e., the stiffness distribution)57

and, as a result, the transmission of incoming waves.
The manner in which the two arrangements facilitate

switching bistable elements impacts the reversibility of the
tuned metamaterial configurations. Recall that, for the LOC
arrangement, ∆ j exhibits a sign change about the system
midpoint, promoting switching in one half of the mass-spring
chain and reinforcing the native state it in the other half.
From the tuned metamaterial configuration, reversing the
substrate strain inverts ∆ j and, thus, the bistable elements in
re-configured half are directed back to the native state while
those in the native state are switched. Therefore, generally,
the LOC arrangement does not support reversible tuning.
Alternatively, for the INT arrangement, ∆ j does not exhibit
a sign change but is maximum (in magnitude) near the system
midpoint, causing switching to commence there. From the
tuned metamaterial configuration, inverting ∆ j by reversing
the substrate strain returns the switched elements to their
native configurations without re-configuring any elements
presently in the native configuration. Therefore, generally,
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FIG. 4. Reversibility of LOC and INT Arrangements. In
response to substrate strain, the relative displacement, ∆ j , exhibits
a sign change in the LOC arrangement but not in the INT
arrangement. Above, metamaterials in the (a) LOC and (b) INT
arrangements are initialized in the tuned configurations in Figs.
3a.(iii) and b.(iii), respectively, which were attained via substrate
compression. Subsequently, submitting the substrate to tension
reveals the reversibility of tuning the overlaying metamaterial. The
INT metamaterial is able to return to its original, untuned state while
the LOC metamaterial is not.

the INT arrangement supports reversibility. These effects are
observed in Fig. 4 and the Supplemental animations.

B. Unit Cell with Variable Morphology

In the preceding subsection, a homogeneous substrate
(i.e., s̄ j = const.) supports a uniform strain distribution which
re-configures the bistable elements in the overlaying
metamaterial: for the LOC arrangement, switching
commences at one of the metamaterial boundaries; for
the INT arrangement, switching initiates within the interior.
Naturally, substrates with a variable stiffness profile (i.e.,
s̄ j 6= const.) will alter these results and may deliver an
enhanced tuning capability. A substrate with monotonic
stiffness function, for example, (not presented here) would
permit switching elements in the LOC chain beyond (or
short of) the current limit at the chain midpoint and, in the
INT chain, would allow switching to initiate at or nearer
a boundary rather than the interior. Nevertheless, in the
following, we consider an elastic foundation with periodic
stiffness function in order the effect a metamaterial with
variable unit cell morphology for wave control.

For simplicity, we consider a bi-material substrate with
stiffnesses α and β (α < β ) which, as before, are sufficiently
large to ensure that the substrate is rigid compared to the
overlaying metamaterial. These stiffnesses are distributed
periodically within the substrate with a unit cell comprising
thirty springs; therefore, the overlaying metamaterial, once

tuned, is expected to exhibit the same periodicity. In
particular, for the LOC arrangement, s̄ j = α for j ≤ 15 and
s̄ j = β for 15 < j ≤ 30; for the INT arrangement, s̄1 = α and
s̄ j = β for 1 < j≤ 30. The interface between the two stiffness
regions provides a nucleation site at which switching may
commence. Utilizing alternative bi-material distributions or
multi-material substrates, isolated regions of the metamaterial
may be designed to switch in a pre-determined sequence;
nevertheless, this is not present interest. In the following, we
consider wave propagation within finite systems consisting of
twenty of the earlier defined unit cells.

Figures 5a,b illustrate the state of the bistable elements
in the metamaterial for the LOC and INT arrangements,
respectively. In particular, the first row shows the relative
displacement, ∆ j, for the twenty-cell systems corresponding
to the indicated nominal strain induced by boundary
displacement. Apparently, the periodic substrate supports an
internal strain field with the same periodicity which assists in
switching the bistable elements at the same spatial intervals.
To the purpose of tunable wave propagation, the second
row of each sub-figure, focuses on the variation of the
morphology, k̄ j, over the unit cell at several levels of substrate
strain. Substrate strain changes the distribution of the bistable
stiffness within the unit cell which impacts the metamaterial
dispersion characteristics.

We compute the dispersion curves utilizing the stable,
strain-dependent metamaterial unit cells. In each stable
configuration, following the definition in Sec. II. A., the
local stiffness k̄ j = k(∆) is determined at each jth element
of the re-configured unit cell, and then a dispersion analysis
is performed for the system of N = 30 elements by suitably
extending Eqs. (3) and (4) and apply Bloch’s theorem, v̄1 =
v̄30γ (see Appendix). Figures 5c,d show how the frequency
range of pass bands, respectively, in the overlaying LOC
and INT metamaterials change as a function of substrate
strain. We also determine the FFT of the time signal
v̄600(t̄) following an impulse, ˙̄v1(t̄)δ (t̄ − t̄0). Again, an
absorbing boundary with k̄ j = k̄600 (601 ≤ j < 800) and
linearly increasing damping is utilized. For a particular strain,
we compare the computed dispersion and the FFT from time
simulation. For both the LOC and the INT arrangement, there
is excellent agreement between the analytical and numerical
results. These results, together with those of the previous
section, support the notion of inherent and tunable wave
control via an adjustable material morphology. Comparing the
common frequency regions in the FFTs in Figs. 3c,d and 5c,d,
we notice that periodic distributions of k̄ j opens additional
band gaps, illustrating the impact of the present repeating
morphology with respect to the relatively simple variations
in Sec. III A. Although, the overlaying metamaterial in
the LOC arrangement is capable of stable and continuous
tuning, except for a narrow range of tuned configurations, it
is irreversible. However, in the case of an INT-type system,
the tuning processes is able to meet all three requirements –
stable, reversible, and continuous.



7

FIG. 5. (Color online). Metamaterial with Tunable Unit Cell Morphology. (a,b) Subject to boundary displacement, a substrate with periodic
stiffness variation elicits a displacement profile, ∆ j , with similar periodicity, leading to periodic element re-configuration and stiffness
modulation, k̄ j. The (analytical) dispersion pass bands and the (numerical) FFT of a simulated disturbance are compared, revealing rough
agreement for the (c) LOC system away from flat bands and excellent agreement for the (d) INT arrangement at lower frequencies.

IV. CONCLUSIONS

Typically, metamaterial tuning schemes demonstrate
continuity, stability, or reversibility individually or in
pair-wise but not triple combination. In this article,
we propose a one-dimensional system comprised of a
bistable metamaterial on an elastic substrate which permits
continuous, stable, and reversible adjustments to the
morphology through strain engineering and, thus, tunable
dynamic performance. This is demonstrated in the form

of a wave waveguide with variable pass band and a
metamaterial unit cell with flexible morphology supporting
a tunable dispersion. The strategy of strain engineering for
morphological tuning can be extended to higher dimensions,
however, the results are generally not stable58,59 in the absence
of persistent substrate strain. However, e.g., defects and the
interaction of nonlinear wave modes with the transition zone
represent two promising methods to overcome this obstacle.
In addition, as s j approaches k̄I, the substrate not only
begins to participate in shaping the wave dynamics together
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with the metamaterial but also begins to sustain an apparent
deformation profile (i.e., warping) in the face of non-uniform
metamaterial morphologies (see Supplementary Material).
This effect suggests an alternative route to programming
shape in soft matter60.

SUPPLEMENTARY MATERIAL

See supplementary material for animations and further
details of the tuning and potential recovery of the
metamaterial in LOC and INT arrangements.
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APPENDIX

Potential Function

Consider each term in Eq. (1) in turn. From the
geometry illustrated in Fig. 1a, where δ = dy/dx, the
instantaneous length of an axial spring is `(∆) = dx ¯̀(∆) =
dx
√
(1−∆)2 +δ 2 and, therefore, its natural length is `0 =

dx ¯̀(0). Thus, the contribution of axial springs to the on-site
potential is given by

ψA(∆) = kAd2
x
[ ¯̀(∆)− ¯̀0

]2
.

In general, for a dipole moment p in a magnetic field B, the
potential energy is given by ψM = −p ·B. The field B of an
arbitrary, point-like magnetic dipole p = pp̂ is61,62

B(p,r) =
µ0 p

4π|r|3

[
3
|r|2

(p̂ · r)r− p̂
]
,

where r is the position vector of a point in space relative
to the position of the field-generating dipole and µ0 is the
permeability of free space. At present, the dipole moment
under consideration is that affixed to the mass, pm, and B is
that resulting from the superposition of fields generated by
the ps pair at the site of pm. To ensure a horizontal resultant,
pm remains parallel to the x-axis while the orientation, θ , of
ps is symmetric about the horizontal axis. For our system,
the position vector can be written r = dxr̄ and the magnetic
potential becomes

ψM = kMd2
x

2

∑
i=1

p̂m

|r̄i|3
·
[

3
|r̄i|2

(p̂s(i) · r̄i)r̄i− p̂s(i)

]
,

where kM = µ0 ps pm/4πd5
x . Notice that the magnetic potential

does not include contributions from dipole moments in
neighboring bistable elements.

Finally, the torsional springs resist the angular
displacement, ϕ(∆), of the axial springs relative to some
arbitrary offset, ϕ0, and may be regarded as the bending
resistance from the ends of the axial springs fixed to the
substrate. For simplicity, ϕ0 = tan−1[(1−∆s(i))/δ ], where the
specific value of i is that for which ∆s(i) is in the upper energy
well of the total potential constructed from ψA and ψM alone;
consequently,

ψT(∆) = kT

[
tan−1 ( 1−∆

δ

)
− tan−1

(
1−∆s(i)

δ

)]2
.

Following the normalization described in Sec. II B, we define
k̄A = kA/kI, k̄M = kM/kI, and k̄T = kT/kId2

x .

Dispersion Relations

Following Eqs. (3) and (4), the matrix equations of motion
for an arbitrary unit cell are given by:[

1 −1
−1 1+ k̄s(i)− ω̄2

][
v̄ j−1
v̄ j

]
=

[
f j−1
f j

]
, (LOC)[

k̄s(i) −k̄s(i)
−k̄s(i) 1+ k̄s(i)− ω̄2

][
v̄ j−1
v̄ j

]
=

[
f j−1
f j

]
, (INT)

where f j and f j−1 are the forces applied by the adjacent
unit cells. Following Sec. II. A., the local stiffness is
given by k̄(∆) = ∂ 2ψ̄/∂∆2; therefore, k̄s(i) = k̄(∆s(i)) are
the stiffnesses associated with the two stable configurations,
∆s(i), i = 1,2. Recall, for the LOC arrangement, ∆ =

v̄ j − V̄j and, for the INT arrangement, ∆ = v̄ j−1 − v̄ j.
Following Bloch’s theorem, v̄ j−1 = v̄ jγ , where γ = e−iκa is
the complex propagation constant with wavenumber κ . Thus,
the displacement transformation

[
v̄ j−1, v̄ j

]T
=Tv̄ j, where T=

[γ 1]T is the Bloch transformation matrix. Simultaneously,
pre-multiplying the matrix equations of motion by the
conjugate transpose, TH, and applying the displacement
transformation – recognizing that cell equilibrium requires
THf = 0 – reduces the equation dimensions. The subsequent
determinate establishes the metamaterial characteristic wave
dispersion relations in Eqs. (5).
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